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A representative set of experimental observations is presented demonstrating a 
remarkably large number of distinct steady flows that all subsist on the same boundary 
conditions. Commentary on the significance of these and related findings re-emphasizes 
previous proposals about the interpretation of the Taylor experiment. 

1. Preliminary discussion 
A somewhat radical point of view regarding the rational explanation of events 

observable in the famous Taylor experiment has been developed by us in a series of 
theoretical and experimental papers. These contributions have for the most part can- 
vassed newly discovered properties of steady cellular flows at moderate values of the 
Reynolds number R (Benjamin 1976, 1978a, b,  c; Benjamin & Mullin 1981; Mullin 
1982; Mullin, Pfister & Lorenzen 1982), but some recent studies in the same spirit have 
dealt with unsteady flows a t  higher values of R (Mullin & Benjamin 1980; Benjamin 
1981; Mullin et al. 1981). A prime contention of the previous discussions has been that 
although the realistic hydrodynamic problem modelling the Taylor experiment is yet 
unsolved in closed form, i t  must have a high multiplicity of isolated solutions when R 
lies well above the quasi-critical range wherein Taylor cells are first easily demonstrable 
by standard flow-visualization techniques. t Thus, as has been evinced by numerous 
observations on different flows that become steady asymptotically in time under the 
same steady boundary conditions, the system possesses various metastable states, and 
these are necessarily complemented by other states of steady motion that are unstable 
and so unobservable experimentally. 

One of the topics already examined with particular care by us is the primary-flow 
exchange process, in which multiplicity of steady flows is plainly an essential factor. 
As the aspect ratio r of the fluid-filled annulus in the Taylor experiment is raised 
through each in a succession of critical values, a different assemblage of Taylor cells 
takes priority as the primary flow. This is the flow that, for a particular geometry of 

t It now seems to be widely accepted that the first appearance of toroidal cells in practice is 
not an abrupt phenomenon, demarked precisely by a critical value of R at which 8 besic flow 
loses stability. Careful observations reveal instead an essentially continuous process: namely, 
as R is gradually raised through the narrow quasi-critical range, arrays of axisymmetric, counter- 
rotating cells spread from the ends and finally link up and become ordered prominently at the 
centre of a Taylor apparatus (cf. Kusnetsov et al. 1977; Pfister & Rehberg 1981, figure 1). But 
statements to the contrary still recur in the literature. 

8 FLM I21 



220 T .  Brooke Benjamin and T .  Mullin 

the fluid domain, is defined uniquely by the property that it is evolved by very gradual 
increases in R from small values. In  an apparatus with fixed outer cylinder and end 
walls, primary flows are found to have an even number of cells in which the spiralling 
motion has the normal direction, radially inwards close to the walls in the two end 
cells. A stable steady flow with an even number of normally spiralling cells is not, of 
course, immediately cancelled as a possibility outside the range of I’ in which it is the 
primary flow. Rather, it  remains realizable as a so-called secondary mode a t  sufficiently 
high R, but will collapse catastrophically if R is then reduced to a critical value 
dependent on I?. The previous experiments, with a comparatively short Taylor 
apparatus, have also demonstrated various anomalous modes of stable steady flow, so 
called because they are always disconnected from the primary flow, remaining for all 
I? secondary in the sense just explained. They include flows featuring an odd number 
of cells, which are therefore asymmetric about a central plane perpendicular to the 
axis of the annulus, and also flows with an even number of cells but with an abnormal 
direction of spiralling (see Benjamin 1978b; Benjamin & Mullin 1981). 

Now, a reflection on the observations already reported and debated by us might be 
that they are peculiar to the comparatively low range of r so far covered, and perhaps 
also to the fastidious experimental procedures needed to reveal the complexities a t  
issue. A simpler view of the whole topic might be taken by emphasizing those features 
that are observed to be at least roughly in accord with the st,andard theoretical model, 
which takes the annulus to be infinitely long, and by dismissing the inconsistencies 
with it as superfluous complications due to ‘end effect’s’. Such complications should 
lapse into insignificance, so it is presumed according to this view,? when I? is in the 
higher ranges common to most rehearsals of the Taylor experiment. Our own view is 
different ! We consider that the high multiplicity and complicated parametric de- 
pendence of the complete solution set, features that have proved particularly amenable 
to demonstration a t  low r, are intrinsic to the general hydrodynamic problem when 
posed realistically. They become even more rather than less pertinent when phenomena 
observed in a long Taylor apparatus are to be construed precisely. Thus, in our view, 
the presence of the ends always bears crucially on what happens in a Taylor apparatus, 
however long. Admittedly, certain gross features of observable phenomena may be 
accountable more or less convincingly by appeal to the infinite theoretical model, a 
relevant and much explored a.bstraction. But a full understanding in principle of all 
that happens needs to accommodate the complex facts about multiplicity, the delicacy 
of the primary-flow process, etc. that have been tied to the realistic problem (cf. 
DiPrima & Swinney 1981, 56.6). 

In support of the viewpoint advocated, the central purpose of these notes is to record 
a typical and, we intend, emphatic demonstration of high multiplicity in a moderately 
long Taylor apparatus. We present experimental observations on fifteen different 
stable steady flows, all of which were realized in the same fluid subject to the same 
geometrical and dynamical boundary conditions. Five of these flows were realizable 
in two different ways, as indicated by simple considerations of symmetry, and so the 
total number demonstrated is twenty. 

According to a sure analytic argument established and variously applied by us in 
the previous papers, these observations imply that the time-independent hydro- 

t Which view is still popular (cf. e.g. Gorman & Swiriney 1982). 
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dynamic problem with the boundary conditions in question has at least 39 solutions. 
In general, if any number N of distinct steady flows are realizable, being therefore 
necessarily stable, the problem has at least 2N - 1 solutions, of which the additional 
N - 1 represent unstable flows. Apart from the number of solutions deducible in this 
way, the existence of still more is indicated by theoretical arguments concerning the 
primary-flow selection process (see Benjamin & Mullin 1981, $2.5). It appears that 
each instance of the process, arising in succession as I' is raised, entails the interplay 
of nine solution branches parametrized by R, which do not include any of those 
representing the observed flows with odd numbers of Taylor cells. 

The observations to be presented exemplify a wide range of comparable ones made 
by us in the apparatus described below. They have been compiled systematically in 
order to comprise, for a representative triplet of values for the parameters R, r and 
radius ratio 7, an identification of alternatively possible steady flows that is much 
fuller than any previously available. We should acknowledge, however, that a variety 
of such direct evidence about multiplicity in the Taylor experiment is already on 
record. For instance, photographs of five distinct flows realized under the same condi- 
tions were included in Benjamin (19783); but as I' was only 3-15 in that case, excep- 
tional dependence on end effects might be alleged. Numerical evidence of multiplicity 
is also available, albeit limited so far (Alziary de Roquefort & Grillaud 1978). 

It is particularly relevant to recall the prior experiment,al results of Burkhalter & 
Koschmieder (1 974), who investigated steady cellular flows produced subsequently to 
sudden starts of their fairly long Taylor apparatus. They found various distinct flows 
to be producible this way for given 7 and I?, the selection depending on widely varied 
supercritical values of R (presented rather as values of Taylor number T ,  proportional 
to R2). In  their account, however, which tends to emphasize comparisons with the 
idealized theory, the flows are discriminated by records of the effective wavelength 
attributable to the cellular arrays, rather than by a tally of cell numbers and directions 
of spiralling. All their findings are consistent with the general, comparatively simple 
interpretation now advocated, although an explanation on such lines was not explicitly 
recognized by Burkhalter & Koschmieder. Namely, as we see the situation, when R 
lies above the quasi-critical range, the real system, determined perhaps fairly crucially 
by I?, possesses numerous but discrete metastable states of steady motion, which have 
R- and r-dependent domains of attraction in some function space where time- 
dependent motions also belong. As the outcome of the starting transients, which are 
likely to depend sensitively on the starting conditions and the dimensionless terminal 
speed R of the rotor, the system is steered into one or other domain of attraction and 
thereafter converges asymptotically to the respective steady flow. 

In  our view this situation cannot be explained tenably by the infinite theoretical 
model alone, and its attributes unaccountable by the abstract model are in fact pivotal 
to a proper explanation. We shall rephrase our view at the end, pinpointing the main 
reasons for it. 

The observations 
The fifteen steady flows demonstrated in figure 1 were produced in a Taylor appara- 

tus with the outer cylindrical wall stationary. The fluid-filled annulus had plane end- 
walls, perpendicular to the axis, which were also stationary. The set of dimensionless 
parameters applying to all these flows is specified as follows, where rl and r2 denote 

8-2 
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the radii of the concentric cylindrical walls, 1 the length of the annulus, and 51 the 
angular speed of the inner wall : 

radius ratio 7 = r1/r2 = 0.600; 

aspect ratio I' = Z/(r2-rJ = 12.61; 

Reynolds number R = SZrl(r2-rl)/v = 359. 

The liquid used was an aqueous solution of glycerol with kinematic viscosity v = 3.53 
mm2/s at the controlled temperature 28.2 "C of the apparatus. A small amount of a 
pearly substance was added for visualization, and the photographs in figure 1 were 
taken with the flows illuminated by a beam of light collimated through a narrow slit 
and directed radially. The camera was placed in approximately but not exactly the 
same position for each photograph, so capturing slight variations in some of the 
incidental highlights. The fifteen different flows are all identified in the caption to the 
figure. 

The representative value of R was chosen in the light of previous results concerning 
the limits of stability for normally spiralling and anomalous modes in the Taylor 
experiment (Mullin & Benjamin 1980).t These limits are quite high for the compara- 
tively small value of 7 in the present and previous experiments. While being high 
enough to admit a satisfactorily wide variety of different steady states, this value of 
R is below the threshold for the onset of travelling waves in each of the cellular arrays 
realized. 

At the chosen values of 7 and I', the primary flow comprises twelve cells. This flow 
could easily be produced by slowly raising i2 from a small value to its prescribed final 
value. All the other, secondary modes were produced by sudden starts of the rotation 
in respective ranges of SZ found by trial (see Benjamin 1978b for a full account of such 
a procedure). Except for those comprising eight, nine, seventeen and eighteen cells, 
these modes were obtained directly with I' a t  its prescribed value. The other four modes 
furthest from the primary flow were obtained first at smaller or larger values of I', and 
then they were respectively stretched or compressed by very gradual adjustments of 
I' to the required value. Long settling times were allowed to confirm that the recorded 
final states of motion were steady and stable. 

Other than the twelve-cell primary flow, the fourteen secondary modes demon- 
strated in figure 1 all collapse eventually as R is reduced by gradual steps. The critical 
values R, of R a t  which they were found to lose stability and collapse are listed in 
table 1.  From these values and from what is already known about the dependency of 
R, upon I' for anomalous modes (Benjamin & Mullin 1981), it appears possible that 
two more stable steady flows exist for the chosen values of 7, r and R. These are the 
two flows next in order to those included in table 1, namely the eight-cell and eighteen- 
cell anomalous modes. Careful attempts to produce them were unsuccessful, however. 
Although producible with ease at values of I' respectively smaller and larger than the 
chosen value, they did not survive the gradual adjustments whereby we tried to take 
them to the required value of r. The vulnerability of these modes appeared account- 
able to a premature onset of travelling waves, triggered by the enforced stretching or 

t Note: in figure 1 of Mullin & Benjamin (1980) the values of R,  were inadvertently left 
based on a definition nr;/v of Reynolds number that had been used previously, rather than 
nrl (r2-r1) /v  as stated in the text and readopted in the present paper. The correct values of R, 
are thus 0.626 times those given. 
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Normally spiralling modes 
No. of cells 8 10 14 16 18 

RO 233 81 76 110 197 

Anomalous modes 

No. of cells 0 10 11 12 18 14 18 16 17 
RO 270 268 246 220 100 201 206 206 212 

TABLE 1 .  Lower limits of mtability for eeoondwy modes at 11 = 0400, I' = 12.01 

compression of the upper end-cell as I' was adjusted; for in either cwe traces of 
travelling-wave behaviour was seen to precede the collapse of the mode. 

Figure 1 includes Ave anomalous modes with an odd number of cells (i.e. from 9 to 
17), each of which flows is therefore capable of two different realizations. In  one 
realization the abnormally spiralling end cell is at  the top of the annulus, and in the 
other it is at  the bottom, but there is complete parity between the two in the case of 
symmetric end-conditions (of. Benjamin 1978b, p. 39). For this reason photographs 
of the five extra stable steady flows have not been included, but it can be aeeerted that 
the total number of stable steady flows effectively demonstrated by figure 1 is twenty. 
Thus the multiplicity of steady flows is definitely established to be a t  least 2 x 20 - 1 
= 39, and the facts reported in the last paragraph point to the likelihood of its being 
at  least 2 x 22- 1 = 43. 

2. Outline of theoretical issues 
Let us now review some basic questione of interpretation that are highlighted by 

such evidence of high multiplicity in the Taylor experiment. 
(i) What is the relation between each of the observable JEowcr and the periodic cellular 

j b w s  described by the infinite model? An analysis by Kogelman & DiPrima (1970), 
marginally refined by Nakaya (1974; see also DiPrima & Swinney 1981, pp. 164-167), 
should first be appreciated in connection with this question. They investigated the 
stability, to axisymmetric disturbances, of infinite Taylor-vortex flows at  supercritical 
values of R (i.e. R > Rc(Am), where Rc(Am) = minRc(A) is the critical value for 
bifurcation from the axially uniform, circular Couette flow into Taylor vortices that 
are normalized in respect of axial translations and have the optimal wavelength Am). 
On this basis they showed that, for small positive R- Rc(Am), these periodic flows are 
stable if A lies in an interval approximately centred on A m  and whose width is approx- 
imately 44 times the difference between the two roots of R = R,(A). Thus, for a given 
R-R,(Am) > 0, the infinite model provides a continuum of periodic solutions that 
may be stable, together with two adjacent continua of unstable solutions. 

In certain important respects, these theoretical findings evidently conform with 
observations such as ours. It appears experimentally that, except near the ends in a 
long Taylor apparatus, cellular flows above the quasi-critical range of R closely copy 
those described by the infinite model, and their spacings fall within the predicted 
interval of stability for A ( = twice spacing of cells in a periodic array). This conformity 
is to be expected, of course, because presumably upon being disturbed the real flows 
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will respond locally in nearly the same way as their periodic counterparts; thus they 
could not be stable if the infinite model for them were not so. Insights into this aspect 
are given by an approximate analysis that Stuart & DiPrima (1978) have made, 
considering a time-dependent envelope equation for arrays of Taylor cells at slightly 
supercritical R. Accordingly, it is clear that findings such as those of Kogelman & 
DiPrima indicate necessary rather than sufficient conditions of stability for real 
cellular flows. In  general they cannot guarantee that such a flow, being inevitably 
subject at the ends to major distortions from periodicity, is realizable in a given Taylor 
apparatus. Reconsidering table 1, we note that the respective lower limits R, of 
stability for the five secondary modes with even numbers of normally spiralling cells 
coincide more or less with the Kogelman-DiPrima estimate based on effective wave- 
length (cf. Burkhalter & Koschmieder 1974, figure 6; DiPrima & Swinney 1981, 
figure 6.5). But the measured values of R, for all nine anomalous modes are too high 
by far to be reconcilable with the infinite model. It is impressive, for example, that 
whereas the fourteen-cell normal and anomalous modes are virtually identical over a 
central length of the arrays, the stability limits for these two flows are quite different. 

As noted earlier, when N ( >  1) different steady flows are known to be observable 
and therefore stable for given 7, I?, R, at least N -  1 unstable flows also exist. It is 
tempting to suppose that these unknown flows may be related to ones in the continua 
of unstable periodic solutions disclosed by the Kogelman-DiPrima analysis, but this 
idea is yet unexplored. 

(ii) What precisely happens when a realistic model allowing for end effects is taken to 
the limit as I' --f co? Does the complete solution set, at a supercritical value of R, develop 
with I' so that it converges in some meaningful sense to the solution set for the inJinite 
model, recovering all itsproperties? Plainly from the evidence, the multiplicity of steady 
flows as exemplified by the present observations will increase without bound as I' is 
increased, and it is plausible that the profusion of discrete solutions for large but finite 
I' (ordered, say, according to average spacing of cells) will in the limit fill out the 
continuum of alternative cellular flows provided by the infinite model. This pre- 
sumption may be deceptive, however, because convergence in the considered sense 
will only hold in a prescribed fractional length of the annulus. For any finite I' however 
large, major differences between the realistic and idealized models will remain at the 
two ends, and there is no a priori reason to dismiss these differences as immaterial 
either to the stability or to other experimentally discernible properties of the whole 
flows in question. 

In  fact, respective to every given finite I', a unique primary flow exists, and all the 
other flows possible at sufficiently high R are secondary modes having properties that 
are qualitatively different. As I' becomes large, the difference in I' spanning successive 
instances of the primary-flow exchange process probably tends to a constant (i.e. the 
wavelength A, of the optimal Taylor-vortex flow). But in principle this process is 
distinctive every time it operates, causing a definite switch of roles between two 
steady cellular modes and so entailing essential dependence on end effects. 

(iii) Can the situation for very large but Jinite I' be given a simple interpretation in 
terms of perturbed bifurcation theory? An affirmative answer has often been suggested, 
particularly m regards the delicate but usually continuous developments of the 
primary flow with increasing R whereby Taylor cells first manifest in practice. It is 
commonly supposed that this aspect of the Taylor experiment simplifies progressively 
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as l7 is made larger, leaving only a residual perturbation from behaviour according to 
the infinite model. In  a rational approach to the question, however, various difficulties 
appear indicating that in principle more rather than less complication arises as I? is 
greatly enlarged. On one count, observed cellular flows in the central part of a long 
Taylor apparatus must always be ‘aware’ of the ends, at  least inasmuch as the ends 
fix the phase of the axial variations everywhere; and on another, as considered under 
(ii), the primary flow mutates by a complex process every time the total length, 
however great, is increased by about Am. 

We accordingly consider it wrong (or rather right only to the extent of a rough 
analogy) to describe the observed situation as a simple ‘softening’ of the supercritical 
bifurcation predicted by the infinite model when the optimal wavelength is prescribed. 
In  other words, end effects when r is very large are not rationally modelled by the 
canonical unfolding of a pitchfork bifurcation - that is, by the well-known algebraic 
characterization (cusp catastrophe) that simply and unequivocally models, for ex- 
ample, the perturbed Euler elastica which has just two post-buckling modes for loads 
slightly above the first critical value. For an extremely long Taylor apparatus, in 
contrast, the process determining the primary flow must discriminate among the great 
number of discrete modes that are close to the one selected. In principle, therefore, this 
process will always depend definitely and in intricate fashion on end effects, however 
elusive the dependence may be to demonstrate experimentally. 

(iv) How does the multiplicity of steady solutions a#ect observations of time-dependent 
phenomena at high R? An astounding variety of such phenomena has been recorded, 
notably in the extensive study by Coles (1965), and accordingly this question calls for 
a circumspect answer. Depending on the cellular mode established at the outset, many 
different routes to turbulence may be followed by gradually raising R beyond the 
respective limit R, €or stability of steady motion. It is noteworthy, however, that a 
narrower view of possible events at  high R in the Taylor experiment has been taken in 
several more recent investigations, which have presumably concentrated on particular 
modes. In justification there is the fact that after a particular array of toroidal cells 
has been established with R < R, and with l7 well inside the limits for survival of the 
mode, the same cellular structure may be preserved when R is raised to far above R ,, 
although fluctuations with progressively more complicated temporal dependence are 
superposed upon it. As is now well known, the typical progression consists of first 
singly then multiply periodic fluctuations, due to azimuthal travelling waves, and 
then incipient turbulence with sharp spectral peaks perhaps still prominent. 

This is a standard version of events which has been reinforced in many recent 
commentaries. Also some progress has been made towards explaining a t  least the first 
manifestations of unsteadiness by means of the infinite model (for a recent review see 
DiPrima & Swinney 1981, $6.4). There are nevertheless various reasons for general 
caution about the interpretation of high-R experiments, which considerations include 
the following. It is already well known that R, is sensitive to 7 and also to r. Further- 
more, in previous experiments of ours in a comparatively short apparatus, R, was 
shown to be a different, highly peaked function of r for each particular normal or 
anomalous mode (Mullin & Benjamin 1980); and this behaviour seems unlikely to 
disappear in higher ranges of I?. Coles (1 965) and others inchding ourselves have also 
shown the forms of the first and subsequent wave motions to vary widely with I? for 
a particular cellular mode, and to change for different modes. Again depending on the 
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particular mode, quite different turbulent regimes a t  high R may be observed to occur 
simultaneously in different parts of the same Taylor apparatus (Mullin et al. 1981). 
Mode jumping and other sudden changes induced by variations in R, often with strong 
hysteresis, have also been observed by Coles and others. Unquestionably, therefore, a 
due answer to question (iv) is that multiplicity profoundly affects the general possibil- 
ities for observations a t  high R, although of course exclusive selection of a cellular 
mode and avoidance of the more complicated possible effects may often be necessary 
for a tractable experimental approach. 

(v) Is profuse multiplicity liable to complicate a numerical approach to the realistic 
hydrodynamic problem? Evidently it is, and therefore caution is needed, because the 
complex experimental facts will be duplicated by any comprehensive numerical study. 
Particular flows with chosen arrays of cells, satisfying realistic end-conditions, may be 
computed unambiguously, as exemplified in the study by Alziary de Roquefort & 
Grillaud (1978). But other stable and unstable solutions to the same boundary-value 
problem will generally lurk not far from selected ones, and it may be a difficult task to 
comprehend and discriminate among the complete solution set. For instance, no 
numerical result is yet available bearing on the primary-flow exchange process. 

We are grateful to the Science and Engineering Research Council for support of the 
research programme that has included the present observations. Thanks are due also 
to Mr J. Mooney, photographer in the Department of Engineering Science a t  Oxford, 
for expert assistance. 
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